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1 Misc. Prerequisites

For an elliptic curve E given by Y 2Z = X2 + aXZ2 + bZ3, we define its j-

invariant to be j(E) = 1728(4a)3)
4a3+27b2 . Two elliptic curves over an algebraically

closed field (in particular, over C!) are isomorphic if and only if they have the
same j-invariant. E is smooth (and hence actually an elliptic curve) if and only
if 4a3 + 27b2 6= 0, so this is well-defined. See Milne’s notes for proof.

In my lecture, I also included a review of basic complex analysis. Knowing the
residue theorem and Liouville’s theorem should be sufficient to continue.

2 Lattices in C

A lattice Λ in C is a subgroup generated by elements ω1, ω2 that are R-independent.
That is, Λ = Zω1 + Zω2. So, we can try to parameterize the space of lattices
by M , the space of pairs of R-independent complex numbers (ω1, ω2). We can
specify a preferred order on the ωi by requiring =(ω1/ω2) > 0. Also, (ω1, ω2)
and (ω′1, ω

′
2) will define the same lattice if and only if they differ by GL2(Z)

action, but to preserve positive imaginary part, we restrict ourselves to SL2(Z).
Hence, we get a bijection from M/SL2(Z) to the set L of lattices.

A lattice Λ is determined up to scaling by the ratio ω1/ω2 ∈ H. The above
bijection then becomes one between L/C× and H/SL2(Z). It’s easy to see that

the induced SL2(Z) action on H is

(
a b
c d

)
τ = aτ+b

cτ+d .

We consider lattices because the quotients C/Λ are tori. We shall now com-
pletely characterize maps between these tori.

Proposition 1. The only holomorphic maps CΛ → C/Λ′ taking 0 to 0 are
maps of the form [z] 7→ [αz] for some α ∈ C satisfying αΛ ⊂ Λ′ (and of course
all such α define holomorphic functions).
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Proof. It is clear that we need αΛ ⊂ Λ′ for multiplication by α to be well-
defined. Certainly such maps are all holomorphic. We must verify that every
holomorphic map φ : C/Λ→ C/Λ′ (taking 0 to 0) is of this form.

By the theory of covering spaces, we may uniquely lift φ to a map φ̃ : C → C
taking 0 to 0. Now, for any ω ∈ Λ, the map z 7→ φ̃(z + ω)− φ̃(z) is continuous
and takes values in Λ, hence is constant. This implies φ̃′ is doubly periodic and
hence constant. Combining with the condition φ̃(0) = 0, we get ˜φ(z) = αz for
some fixed α by integration.

We may also define functions whose input is a lattice in C. The most natural
of these are the Eisenstein series. For Λ a lattice and k > 1, consider

G2k(Λ) =
∑′

ω∈Λ

1

ω2k
.

The prime on the sum means to exclude ω = 0. We only care about even
exponents since the sum is zero if the exponent is odd.

By the correspondence described above, this gives rise to a function on the upper
half plane, defined by G2k(τ) = G2k(Zτ +Z), also called an Eisenstein series. A
recurring theme in this talk will be sweeping convergence questions under the
rug. So: the sum G2k converges and does so nicely enough to be a holomorphic
function on H.

3 Doubly Periodic Funcitons

We want to study functions on lattices C/Λ. A map C/Λ→ C is the same thing
as a map f : C → C with f(z + ω1) = f(z) = f(z + ω2) for all z ∈ C. Such
a map f is called “doubly period” for obvious reasons. A doubly periodic non-
constant function cannot be holomorphic everywhere by Liouville’s theorem.
So, we will content ourselves with meromorphic doubly periodic functions. Two
easy results:

Proposition 2. Let f be doubly periodic, not identically zero, and let D be a
fundamental domain for Λ with no zeroes or poles on ∂Λ. Then

•
∑
P∈D ResP (f) = 0

•
∑
P∈D ordP (f) = 0,

where ordP (f) is the order of a zero, or the negative of the order of a pole.

Proof. Apply the residue theorem to f and f ′/f respectively, noting that both
are doubly periodic, and hence integrate to zero over ∂D.
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We also note that any non constant doubly periodic map f is surjective has a
zero, as otherwise 1/f would be bounded. Replacing f by f − a shows that
non constant doubly periodic maps are surjective. This could also be seen by
appealing to the second statement of the previous proposition.

Our job is now to search for doubly periodic maps. Consider

℘(z) =
1

z2
+
∑′

ω∈Λ

1

(z − ω)2
− 1

ω
.

It converges, and it converges nicely enough to practice term-wise differentiation.
Believe me. So, its derivative is:

℘′(z) =
∑
ω∈Λ

−2
(z−ω)3 . Since ℘′ is clearly doubly periodic, so is ℘ (proof: ℘(z +

ω1)− ℘(z) must be constant, but ℘ is even).

Now comes a surprising fact, which will relate the ℘-function to elliptic curves.

Proposition 3. For a lattice Λ, the associated function ℘ satisfies the differ-
ential equation

℘′(z)2 = 4℘(z)3 − g4℘(z)− g6,

where g4 = 60G4(Λ) and g6 = 140G6(Λ).

Proof. We have the identity 1
(1−t)2 =

∑
n≥1 nt

n−1 =
∑
n≥0(n+ 1)tn for |t| < 1.

Now, for |z| smaller than all ω 6= 0, we get:

℘(z) =
1

z2
+
∑′

ω∈Λ

1

(z − ω)2
− 1

ω2
=

1

z2
+
∑′

ω∈Λ

1

ω2

(
1

1− (z/ω)2
− 1

)
=

1

z2

∑
n≥1

∑′

ω

(n+ 1)
zn

ωn+2
=

1

z2
+
∑
k≥1

(2k + 1)G2k+2(Λ)z2k

=
1

z2
+ 3G4z

2 + 5G6z
4 + . . .

This gives ℘′(z) = −2
z3 + 6G4z + 20G6z

3 + . . ..

Expanding out, we find that ℘′(z)2− 4℘(z)3 + 60G4(Λ)℘(z) + 140G6(Λ) has no
negative powers zn and its constant term is 0. So it is holomorphic at z = 0
(with value zero) and hence at all lattice points. So, by Liouville, this function
of z is identically zero.

With this differential equation in mind, it is natural to try to associate an elliptic
curve Y 2Z = 4X3−g4XZ

2−g6Z
3 to the lattice Λ. Of course, we need to verify

that this curve is nonsingular. By Adam’s talk last week, the following lemma
is sufficient to guarantee this.

Lemma 1. The polynomial f(X) = 4X3− g4(Λ)− g6(Λ) has distinct roots, for
any Λ = Zω1 + Zω2.
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Proof. Since ℘′ is odd and doubly periodic, we have ℘′(ω1/2) = −℘′(−ω1/2) =
−℘′(ω1/2) and hence the differential equation tells us that ℘(ω1/2) is a zero of
f . Similarly, the other zeroes are ℘(ω2/2) and ℘((ω1 + ω2)/2). It remains to
check that these are all distinct.

Consider the function ℘(z) − ℘(ω1/2). It has a zero at ω1/2, which must be
of order 2 since its derivative also vanishes there. Also, in a fundamental do-
main D containing 0, its pole of order 2 is its only pole in the fundamental
domain. Hence, since

∑
p∈D ord(p) = 0, we find that there are no other zeroes

of ℘(z)− ℘(ω1/2). In particular, ℘(ω2/2) and ℘((ω1 + ω2)/2) are not equal to
℘(ω1/2). Repeating the argument for the other two points in question finishes
the argument.

Call this elliptic curve E(Λ)(C). We have a map C/Λ → E(Λ)(C) given by
taking z+Λ to (℘(z) : ℘′(z) : 1). We shall verify that this map is an isomorphism
of Riemann surfaces and of groups (remember that C/Λ is a quotient group too!).

Proposition 4. The above map is an isomorphism of Riemann surfaces.

Proof. Surjective: The map ℘ : C/Λ → Ĉ = P1(C) is surjective, as any non-
constant doubly periodic map must be. As ℘ is even, the values [z] and [−z]
map to the same value. Choose the one of the two that gives the correct y
coordinate.

Injective: Suppose (℘(z1), ℘′(z1)) = (℘(z2), ℘′(z2)). First suppose 2z1 /∈ Λ.
Then ℘(z) − ℘(z1) is elliptic of order 2 and vanishes at z1,−z2, z2, so two of
these must be congruent modulo Λ (since 2z1 /∈ Λ). Hence z2 ≡ ±z1 mod Λ.
Comparing the values of ℘′ at these points gives z1 ≡ z2 mod Λ.

On the other hand, suppose 2z1 ∈ Λ. Then ℘(z) − ℘(z1) has a double zero at
z1 (since ℘′(z1) = 0) and vanishes at z2. The same result follows.

The map is clearly holomorphic. That its inverse is holomorphic too may be
proven by showing that the derivative never vanishes and appealing to the in-
verse function theorem. We shall not do this here.

Proposition 5. The map is also a group homomorphism.

Proof. We verify the following addition formula:

℘(z + z′) =
1

4

(
℘′(z)− ℘′(z′)
℘(z)− ℘(z′)

)
− ℘(z)− ℘(z′).

Let f(z) be the difference between the left and right hand sides. Its only possible
poles are at 0,±z′ and by calculating Laurent series, only −z′ is a possible pole,
and at worst simple. But since ℘(z + z′) is doubly periodic this means it must
be constant, and thus identically zero since f(0) = 0.

This agrees with the elliptic curve group law by the following calculation: let
P = (x, y) and P ′ = (x′, y′) be points on the elliptic curve Y 2 = 4X3−g4X−g6
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and let Y = mX+b be the line passing through them. Then, x, x′, and x(P+P ′)
are the roots of the cubic equation (mX + c)2 − 4X3 + g4X + g6 and so we get

x(P + P ′) + x+ x′ = m2/4 = 1
4

(
y−y′
x−x′

)2

.

It turns out that every isomorphism class of elliptic curve comes from some
torus. We won’t prove this, but, following Milne, we will rephrase the question
in terms of the j function. The j invariant of the curve E(Λ) is

j(Λ) =
1728g4(Λ)3

g4(Λ)3 − 27g6(Λ)2
.

For τ ∈ H, we can define j(τ) = j(Zτ + Z). Since the j invariant of Λ depends
only on Λ up to scaling, we see that the isomorphism class of E(Λ) depends
only on the isomorphism class of Λ.

We can rephrase the claim that every isomorphism class of elliptic curve arises
from a lattice as the statement that this j function is surjective.

4 Some remarks about complex multiplication

Let’s say something about the endomorphism ring End(C/Λ). We always have
Z ⊂ End(C/Λ), but if τ = ω1/ω2 satisfies [Q(τ) : τ ] = 2, then End(C/Λ) is a
rank 2 subring of Q(τ).

For example, C/Z[i] has multiplication by i as an element.

For some concrete examples in elliptic curves, we see that y2 = x3 + ax admits
the automorphism (x : y : z) 7→ (−x : iy : z) of order 4.

Also, y2 = x3 + b has the automorphism (x : y : z) 7→ (e2πi/3 : y : z).

Elliptic curves with endomorphisms other than multiplication by n ∈ Z are said
to have complex multiplication, called such because the corresponding endo-
morphism of a torus is multiplication by a non-real complex number.
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